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MIXED-TYPE FINITE ELEMENT FORMULATION OF HIGHER
ORDER SHEAR DEFORMATION THEORY FOR THE LINEAR AND

NONLINEAR ANALYSES OF A LAMINATED COMPOSITE PLATE

Jang Keun Lim *

(Received Feberuary 16, 1990)

For the linear and nonlinear analyses of a laminated composite plate structure, the mixed type finite element program is
developed on the basis of higher order shear deformation theory of laminated plates. The accuracy of this program is checked by
means of comparing with the existing results for laminated rectangular plates and is found to agree well with them. Deformations
and interlaminar stresses of laminated plates are calculated according to the variation of layer numbers. fiber orientations, and
plate thicknesses, so that the shear and nonlinear effects on their behaviors are studied. It is found that plate deformations are
reduced by means of arranging the fiber direction into the angle·ply and increasing layer numbers.
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NOMENCLATURE------

: Side lengthes of a rectangular plate
: Elastic constants in fiber and matrix directions

respectively
Gi2,C,3,G31 : Shear moduli in each direction
h : Plate thickness
n : Number of sublaminates
q=qo /(x,y) : Load intensity function
q*=qll(a/h)'/E2: Nondimensionalized load intensity
w* : Dimensionless deflection
N : [N I N2 N3]7 = [Nx Ny NxY ]7
M : [MI M2 M3]T=[Mx My MxY ]7
P : [PI H Ps]7=[Px Py PXy]7
V : [VI Vi V;]7 = [Vx Vy VXy ]7
R : [Ri R2 R3]7 = [Rx Ry Rxy ]7
Vl2 : Poisson's ratio to fiber direction in matrix
Q : Analytical domain
a*x,a* y, r* xY, r* yz, r* zx : Dimensionless stress components
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1. INTRODUCTION

In recent years, composite materials have been widely used,
largely because of their superior mechanical properties.
However, transverse shear deformations are much more
pronounced for composite structures than for conventional
materials. Various theories have threfore been established to
analyze composite plates.

The classical theory of plates (Reissner, Stavsky, 1961)
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based on the Kirchhoff-Love hypothesis underestimates de­
flections and stresses in the laminated plate. These resulting
errors are even higher for plates made of advanced compos­
ites like graphite-epoxy, whose elastic modulus to shear
modulus ratio is very high.

Many plate theories exist that account for transverse shear
strains. of these, the theories based on assumed displacement
fields as functions of thickness coordinate provide compara­
tively easy applications.

In Reissener-Mindlin type theories[Reissner (1961), Stavs­
ky(1961), Mindlin (1958), Whitney(1970, 1973), L0(1977l],
the displacement field accounts for linear or higher order
variations of midplane displacements through thickness.

But these shear deformation theories do not satisfy the
conditions of zero transverse shear stresses on the top and the
bottom surfaces of a plate, and require a shear correction
factor to the transverse shear stiffness.

Levinson (1980) , Murthy (1981) , and Reddy (1984) presented
theories that account for a parabolic variation of the tran­
sverse shear strains through thickness, and consequently,
there is no need to use the shear correction coefficients in
computing the shear stresses. Displacement fields in these
higher order shear deformation theories are mathematically
derived from virtual work principle to be useful for actual
problems.

Laminated plate being thin, its geometrically nonlinear
behavior can not be neglected. For these nonlinear probelms.
Chia (1972) applied the perturbation method to the nonlinear
analysis of a clamped anisotropic plate but no pertinent
results were reported.

Zaghloul (1975), thereafter, reported the results of the
linear and nonlinear analyses of symmetrically laminated
plates. Using the cassical theory of laminated plates, they
obtained the nonlinear solution of simply supported laminat·
ed plates by means of finite difference technique and compar­
ed the results with experimentally measured values.
. Finite element analysis of a laminated composite plate has
been reported by many researchers, but most of them [jeya-



110 jan/{ Kcun Lim

chandrabose (1985), Chaudhuri (1987) J are based on the clas­
sical theory of laminated plates.

For higher order shear deformation theory, Kant(1982) and
Phan (1985) suggested the finite element formulation method.
but they treated only the linear analysis of laminated plates,
and because of using the displacement type finite element of
high order shape functions, the algebraically complicated
procedure of element stiffness formulation and the introduc­
tion of more degrees of freedom were necessiated and requir­
ed more storages and computer times.

[n this paper, for the linear and nonlinear analyses of
laminated composite plates, higher order shear deformation
theory of laminated plate bending is simply formulated by the
mixed type finite element method.

The variation effects of layer number, fiber orientation and
plate thickness on the behavior of a laminated rectangular
plate are studied. The shear and nonlinear effects of deforma­
tion are characteristically evaluated.

(3c)

(4a)

(4b)

For the plate possessing a plane of elastic symmetry parallel
to the x-y plane, the constitutive euqations for a layer can
be written;

2. HIGHER ORDER SHEAR DEFOR­
MATION THEORY OF LAMINATED

COMPOSITE PLATES

[n the higher order shear deformation theory of laminated
plate bending, in-plane displacements (u, v) are represented
as high order function of thickness coordinate, z,on the
condition which shear stress components f yz , fxz are zero on
the top and the bottom surfaces of a plate. In this paper,
higher order shear deformation theory of laminated plates
suggested Reddy (1984) is reviewed and the following dis­
placement field is introduced;

where Q, (lare the transformed reduced stiffness matrices
(Reddy, 1984).

Using this displacement field, the equilibrium equations of
a system can be derived by principle of virtual displacements
as follows;

U uo-r- z[ CPx --l (-iznCPr+ ~~))]

u= Vo~ z[ cPy- j (-In cPy+ ~~)]
w= w(x,Y) (1)

where

(1= Q<:
(j = (j€

87[= [[l hI2

(1T8<:+ (JTln)dz- q8w]dxdYJQ -hj2

fa[ N T8<:o+ M T8xo+ p TOX2 + VTO€o

+ R Tox2 -qow]d.Q=0

1
hl2

(N,M,P) = (1(l,z,z3)dz
-h12

1
hl2

(V,R) = (J(l,z2)dz
-h/2

(5)

(6)

(7)

(8)

where un, Vo and w denote the displacements of a point (x ,Y)

on the midplane, and cpx,CPy are the rotations of normals to
midplane about the y and x axes, respectively. This dis­
placemant field is the same as that chosen by Levinson (1980)
except for Uo,Vo. The von Karman strains associated with the
displacement field in Eq. (1) are;

where

<:= <:0+ z(ko+ Z2 k 2)

€= €0+Z2/(2

cox ouo+l(kY
ox 2 ox

<:0= EOy ~+l(kYoy 2 oy

IOXY
oUo +}vo +k . k
oy ox ox oy

kOx oCPxax
kO= kOy

ocpy
BY

kOxY
oCPx + ocpy
oy ox

(2)

(3a)

(3b)

Considering (7). (8) and substituting (2), (3), into Eq.
(6), the following equilibrium equtions and pertinent boun­
dary conditions are obtained by integration by part.

(9a)

(9b)

(9c)

(9d)

(ge)

(lOa)
(lOb)

(IOc)
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Since nonlinear terms of Eq. (8) are included in eO. this strain
vector can be separated into two parts;

In Eq. (10), nx, ny are the direction cosines of outward normal
on boundary surfaces of the laminates, and Vn= Vxn x + Vyny,
Rn= Rxnx+ Ryny, Boundary conditions designated in Eq.
(10) are useful for finite element analysis.

3. LINEAR AND NONLINEAR
FINITE ELEMENT METHODS

auo-ax
avo
"ay
auo +2vo
ay ax

(9)

can be written and considering (5), (7), and (8), the follow­
ing matrix equations are obtained;

(20)
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OlrN is the geometrically nonlinear term and the nonlinear
stiffness matrix is calculated from this equation as follows;

OlrL is the basic equation to calculate the linear stiffness
matrix and can be represented as follows;

Substituting (9) into (18), Eq. (18) can be written as fol­
lows;

(16)

(3)

(12)

(17)

(14)

(15)

(11)

H'
B'
C'T

H' = BB'+EC'T,L' = BC' + EF'
G'=A-H'B-L'E

[B' C']==[D F]-I
C'T F' F H

Olr= fa[ ot,°TN +oxoTM + OX2TP+OeOT V

+ ox2TR - qowJdxdy = 0

1
h /2

(A,B,D,E,F,H)= Q(l,z,z2,Z3,Z',Z6)dz
-h/2

(A,D ,F) = (h/2 Q(l,r,z')dzJ-hl2

where

From Eq.(6)

From(2), (131 and (16), Eq.(ll)can be written as fol­
lows;

Considering (3), (12) and (13), Eq. (11) is the general form of
a displaceement type finite element method and includes
several high order derivatives of displacements that require a
quintic polynomial to represent the interpolation functions­
which is computationally and algebraically complicated.

To compensate these problems, in this paper, we resort to
the mixed-type finite element formulation with U,V,W,~X,~y,

Mx,My,Mxy,Px,Py and PXy as primary variables. This mixed
type finite element method requires transforming Eq. (2) to
the following:



Fig. 2 Center deflection according to the variation of plate
thickness: simply supported, b/a = 1, (0/90/0)
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Fig. 1 Isoparametric quadratic element

112

S, (i = 1,2," ·,8) included in the Eqs. (23), (24) are inter­
polation functions (Cook, 1989) of element nodes.

In(21) and (22), i,j= 1,2,3 and m,n= 1,2 which are dummy
indices representing Einstein's notation. </;,e'f,kJ,kJ,Mj,Pj re­
present the 3 components of eOL,eoN,ko,k2 ,M,P respectively
and tOm means the two components of to.

These linear and nonlinear stiffness matrices are calcu­
lated from (21) and (22), using 8-node isoparmetric quadratic
element as shown in Fig. 1.
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Fig.4 Distribution of normal stress(a*y) through plate Thick­
ness: b/ (1=], (0/90/0)

shear deformation theory (HSPT) (Reddy, 1984), the clas­
sical plate theory (CPT).

Center deflections and interlaminar stress components of
laminated square plates (b / a = 1) subject to sinusoidal
loading are shown in Figs. (2) - (7). These plates are
assumed to be simply supported and have 3 layers of equal
thickness, cross-ply, symmetric laminates (0/90/0) and
equal material properties in each layer.

Fig.3 Distribution of normal stress(a*x) through plate thick­
ness: b/ a = 1, (0/90/0)

(24)

(23)

(22)

H

x= L;S'(~,lJ)x,
1",1

H

Y == L;S'(~,lJ)Y,
1=1

(u, u, w, 'Px,'Py,Mx,My,Mxy,Px,Py,PXY)
H

= L;S'(~,lJ)
i= 1

(Ui, Vi, UJi, r.pxi, CPYi,MXi,MYi,MXYi,Pxi,PYi,PXYi)

4. NUMERICAL RESULTS

Using the mixed type finite element method formulated in
this paper, the linear and nonlinear behaviors of laminated
composite plates are presented. According to the variations
of plate thickness, layer number and fiber orientation, the
effects on the deflections and the stresses of rectangular
laminate plates are investigated. The finite element solutions
are certified by comparing the results with the 3-dimensional
exact solutions (ELASTIC) (Pagano, 1970), the higher order

Deflections and stresses were non-dimensionalized as fol­
lows;

(26)

In Fig. 2 the result of finite element method is in very good
agreement with two analytical solutions, but if side to thick­
ness ratio (a/ h) is less than 50, CPT solution underes-
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Figure 8 shows the nonlinear results which the center
deflection of orthogonalized square plate subjected to unifor­
mly distributed loading is compared with the experimentally
measured values (Zaghloul, 1975). This plate is simply
supported. The results of finite element method are in good
agreement within 5% but CPT solution is underestimated in
nonlinear analysis too. This CPT solution (Zaghloul, 1975) is
the result of finite difference nonlinear analysis for the same
plate. Figures 9 and 10 show the variations of plate deflection

timates the deflection because of neglecting the shear effect
on the transverse deformation. The variations of plane stress
components through plate thickness are shown in Figs. 3, 4,
and 5. CPT solution also underestimates the stresses and the
differences are especially high on the layer boundaries.

Figures. 6 and 7 show the distributions of transverse
shear stresses. which are underestimated by CPT. In the
CPT solutions. these shear stresses are computed by integrat­
ing the following equilibrium equations and boundary condi­
tions.

oryZ orX )! O[yaz- 0= - aiJ- - --a-y
[X<I<~"hi2 =n, [y<lj~±h!2 =n

(27)
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Fig. 5 Distribution of shear stress ([' Xy) through plate thick·
ness: b/ a =1. (0/90/0)

Fig. 9 Reduction of deflection according to increase of layer
number in cross-ply laminate: (0/90) n
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Fig. 10 Reduction of deflection according to increase of layer
numner in angle-ply laminate: (45/-45)n
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Fig.7 Distribmion of interlaminar shear stress([' xz) through
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Fig. 11 Reduction of deflection due to fiber orientation: b/a = 1,
simply supported, uniformly distributed loading
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Fig. 12 Nonlinear effect on deflection according to layer numbers
in cross-ply laminate: (0/90) n
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5. CONCLUSIONS

Fig. 14 Reduction of nonlinear effect according to layer number:
(0/90) n, h/ a = 1, simply supported

Fig. 13 Nonlinear effect on deflection according to layer number
in angle-ply laminate: (45/-45) n

REFERENCES

(3) Increasing the layer numbers in the laminated composite
plates has the effects of reducing the shear deformation and
the nonlinear deflection.

Chaudhuri, R.A. and Seide, P., 1987, "An Approximate
Semi-Analytical Method for Prediction of Interlaminar Shear
Stresses in an Arbitrarily Laminated Thick Plate," Com­
puters & Structures, Vol. 25, N0_ 4, pp. 627 - 636.

Chia, c.Y., 1972, "Finite Deflections of Uniformly Loaded,
Clamped, Rectangulr, Anisotropic Plates," AIAA Journal,
Vol. 10, pp. 1399-1400

Cook, R.D_, Malkus, D.S. and Plesha, M.E., 1989, "Concepts
and Applications of Finite Element Analysis," 3rd ed., Wiley,
New York.

Jeyachandrabose, C. and Kirkhope, ]., 1985, "Explicit For­
mulation for a Higher Precision Triangular Laminated
Anisotropic Thin Plate Finite Element," Computers &
Structures, Vol. 20, No.6, pp.901-1007.

Kant, T., Owen, D.R.J, and Zienkiewicz, O.c., 1982, "A
Refined Higher Order C Plate Bending element," Com­
puters & Structures, Vol. 15, No.1, pp. 54-58.

Levinson, M., 1980, "An Accurate Simple Theory of the
Statics and Dynamics of Elastic Plates," Mechanics Resear­
ch Communications, Vol. 7, pp.343-350

Lo, K.H., Christensen, R.M. and Wu, E.M., 1977, "Higher
Order Theory of Plate Deformation, part 2; Laminated
Plates," ASME Journal of Applied Mechanics, Vol. 44, pp. 669
-676.

Mindlin, R.D., 1958, "Influence of Rotary Inertia and Shear
on Flexural Motions of Elastic Plates," ASME Journal of
Applied Mechanics, Vol. 18, No.1, pp.31-38.

Murthy, M_V.V., 1981, "An Improved Transverse Shear
Deformation Theory for Laminated Anisotropic Plates,"
NASA Technical Paper 1903.

Pagano, N. ]., 1970. "Exacxt Solutions for Rectangular
Bidirctional Composites and Sandwitch Plates," Journal of
Composite Materials, Vol. 4, p.20-34.

Phan, N.D. and Reddy, J,N., 1985, "Analysis of Laminated
Composite Plates Using a Higher Order Shear Deformatin
Theory", International Journal for Numerical Methods in
Engineering, Vol. 21, pp. 2201-2219.

Reddy, J_N., 1984, "Energy and Variational Methods in
Applied Mechanics, Wiley, New York.

Reddy, J,N., 1984, "A Simple Higher Order Theory for
Laminated Composite Plates," AS ME Journal of Applied
Mechanics, Vol. 51, Dec., pp. 745-752.

Reissner, E. and Stavsky, Y., 1961, "Bending and Stretcting
of Certain Types of Heterogeneous Aeolotropic Elastic
Plates," ASME Journal of Apllied Mechanics, Vol. 28, pp. 402
-405.

Stavsky, Y., 1961, "Bending and Stretching of Laminated
Aeolotropic Plates," Proceedings of ASCE, Journal of En­
gineering Mechanics Division, Vol. 87, pp. 31-35.

Whitney, J,M. and Pagano, N.]., 1970, "Shear Deformation
in Heterogeneuos Anisotropic Plates, " ASME Journal of
Applied Mechanics, Vol. 37, Dec., pp. 1031-1036.

Whitney, J,M. and Sun, C.T., 1973, "Higher Order Theory
for Extensional Motion of Laminated Composites," Journal
of Sound and Vibration, Vol. 30, Sept., pp. 85-97.

Zaghloul, S.A. and Kennedy,J.B., 1975, "Nonlinear Behav­
ior of Symmetrically Laminated Plates," ASME Journal of
Applied Mechanics, Vol. 42, Mar., pp. 234-236.

l!I (45/-45)
x 145/-45)'"

-N-l(l]
x N-l(NJ
.. N-4(NJ

-"-N-4lll

25 50 75 100 125 150 \75 200 225 250

DllEKSIOHLESS lNTENSJTJES (ql

r-------------

o
o

~ 4

~ ].5

i:i 3

§ 2.5

~

~ 1.5

iii 1
'II
<3 .5

3.2

.~ :: I
~ 2.24

~ 1.92

o 1.6

~ '"
iii"
~ .64

.32
oL-'::=~;lI;;~~=-==..... ,J

o 10 20 30 ~ 50 60 70 80 ~ tOO
S!CI:: TO THJCI<"lESSR.H!O (a1hJ

according to layer numbers. In these figures, the deflection of
a plate with the same thickness can be reduced by means of
increasing layer numbers. These characteristics are almost
constant without any relations of plate thickness and fiber
orientation. For another method to reduce the deflection, as
shown in Fig. 11, angle-ply (45/45)n prefers to the cross-ply
(0/90) n in assembling the fiber orientation_ Figs. 12 and 13
show that the nonlinear characteristics of the same plates are
different from the linear ones. In a word, the reduction rates
of deflection according to increasing layer numbers is more
significant in thick plates.

This is considered as the reason why the nonlinear effect on
the transverse shear deformation is reduced in the laminated
plate with more layers. The nonlinear characteristics accord­
ing to the variations of loadings are shown in Fig. 14. These
nonlinear characteristics are increased according to the
magnitude of loadings, but can be reduced by means of in­
creasing layer numbers_

Higher order shear deformation theory of laminated com­
posite plates is formulated by the mixed type finite element
method. Laminated rectangular plates with the variations of
thickness, layer number and fiber orientation are analyzed
linearly and geometrically nonlinearly. As a result of this
study, the following conclusions are obtained;
(1) The mixed formulation of 8-noded isoparametric element
with quadratic interpolation function is algebraically simpler
than the general displacement type, and these results are in
good agreement with the existing analytical solutions and the
experimentally measured values_
(2) Deflection of a laminate plate with constant thickness
can be reduced by means of increasing the layer numbers and
assembling the fiber orientation in the angle-ply rather than
the cross-ply.


